Сейчас мы изучаем Теории
Дневной стороны |
Изучить Описания
Иных миров |
Изучить Теории
Ночной стороны |
Брайан Грин. Теория струн Теория струн как разрешение конфликта Общая теория относительности и квантовая механика Обычной областью применения общей теории относительности являются огромные, астрономические масштабы
расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство
является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую
механику, мы должны резко изменить фокусировку и исследовать свойства пространства в
микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного
увеличения масштаба и перехода к уменьшающимся областям пространства.
По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуаций, управляемых соотношением неопределенностей, является все – даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика говорит, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуаций гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в предыдущих рассуждениях. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уиллер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена – описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуаций квантового мира, существующих в масштабе ультрамикроскопических расстояний. Только музыка, или Суть теории суперструн С давних времен музыка является источником метафорических образов для тех, кто пытается разгадать тайны Вселенной. С открытием теории суперструн музыкальные метафоры приобрели удивительную реальность, поскольку согласно этой теории микромир заполнен крошечными струнами, звучание которых управляет эволюцией мироздания. Теория струн предлагает оригинальное и глубокое изменение теоретического описания свойств Вселенной на ультрамикроскопическом уровне – изменение, которое, как постепенно осознают физики, модифицирует общую теорию относительности, делая ее полностью совместимой с законами квантовой механики. Согласно теории струн элементарные компоненты Вселенной не являются точечными частицами, а представляют собой крошечные одномерные волокна, подобные бесконечно тонким, непрерывно вибрирующим резиновым лентам. Здесь важно не дать названию ввести нас в заблуждение. В отличие от обычных струн, состоящих из молекул и атомов, струны, о которых говорит теория струн, лежат глубоко в самом сердце материи. Теория струн утверждает, что именно они представляют собой ультрамикроскопические компоненты, из которых состоят частицы, образующие атомы. Струны, являющиеся объектом теории струн столь малы – в среднем их размер сопоставим с планковской длиной, - что даже при изучении с помощью самого мощного оборудования они выглядят точечными. Однако уже простая замена точечных частиц струнами в качестве фундаментальных компонентов мироздания ведет к далеко идущим последствиям. Объединение через теорию струн Помимо неспособности включить в себя гравитационное взаимодействие, стандартная модель, представляющая элементарные компоненты мироздания в виде точечных образований, лишенных какой-либо внутренней структуры, обладает еще одним недостатком – она не дает описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Ученым не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Теория струн имеет совершенно иной характер. Все входные данные, которые ей необходимы,
ограничиваются описываемым ниже единственным параметром. Теория струн способна объяснить все свойства
микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может
совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием
резонансных. Пример таких колебаний показан на рис. 6.1.
Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закрепленными
концами струны укладывается в точности целое число максимумов и минимумов. Человеческое ухо
воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в
теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в
точности целое число равномерно распределенных максимумов и минимумов. Некоторые примеры таких
колебаний показаны на рис. 6.2.
Основное утверждение теории струн таково: точно так же, как различные моды резонансных колебаний скрипичных струн рождают различные музыкальные ноты, различные моды колебаний фундаментальных струн порождают различные массы и константы взаимодействия. Поскольку это очень важное утверждение, давайте повторим его еще раз. Согласно теории струн свойства элементарных «частиц» - их массы и константы различных взаимодействий – в точности определяются резонансными модами колебаний, реализуемыми внутренними струнами этих частиц. Легче всего понять эту ассоциацию для массы частицы. Энергия конкретной моды колебания струны
зависит от ее амплитуды и от длины волны. Чем больше амплитуда и чем короче длина волны, тем больше
энергия (рис. 6.3).
Такая картина, опять же, привычна для нас: если коснуться струны скрипки сильнее, звук будет более сильным, слабое прикосновение даст более нежный звук. Согласно специальной теории относительности энергия и масса представляют собой две стороны одной медали: чем больше энергия, тем больше масса и наоборот. Таким образом, в соответствии с теорией струн, масса элементарной частицы определяется энергией колебания внутренней струны этой частицы. Внутренние струны более тяжелых частиц совершают более интенсивные колебания, струны легких частиц колеблются менее интенсивно. Поскольку масса частицы определяет ее гравитационные характеристики, существует прямая связь между модой колебания струны и откликом частицы на действие гравитационной силы. Физики установили, что существует аналогичное соответствие между иными характеристиками колебания струны и реакцией на другие взаимодействия – например, электрический заряд, константы слабого и сильного взаимодействия, которые несет частица, в точности определяются типом ее колебания. Более того, это справедливо и для самих частиц, переносящих взаимодействия – фотоны, калибровочные бозоны слабого взаимодействия и глюоны представляют собой всего лишь иные моды колебаний струн, и, что особенно важно, характеристики одной из мод колебаний струн в точности совпадают с характеристиками гравитона. Таким образом, согласно теории струн наблюдаемые характеристики всех элементарных частиц определяются конкретной модой резонансного колебания внутренних струн. Этот взгляд радикально отличается от точки зрения, которой придерживались физики до открытия теории струн, когда считалось, что различия между фундаментальными частицами обусловлены тем, что они «отрезаны от разных кусков ткани». Хотя частицы считались элементарными, предполагалось, что они состоят из различного «материала». Так, например, «материал» электрона имел отрицательный электрический заряд, а «материал» нейтрино был электрически нейтральным. Теория струн радикально изменила эту картину, объявив, что «материал» всего вещества и всех взаимодействий является одним и тем же. Каждая элементарная частица состоит из отдельной струны, - точнее, каждая частица представляет собой отдельную струну – и все струны являются абсолютно идентичными. Различия между частицами обусловлены различными модами резонансных колебаний этих струн. То, что представлялось различными частицами, на самом деле является различными «нотами», исполняемыми на фундаментальной струне. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна космической симфонии. Музыка теории струн Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Как определить натяжение фундаментальных струн? Когда в 1974 г. предположили, что одна из мод колебаний струн представляет собой гравитон, расчеты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующим гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передает гравитационное воздействие, которое является очень слабым, полученное значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов (1039) тонн, так называемое планковское натяжение. Таким образом, фундаментальные струны являются чрезвычайно жесткими по сравнению с обычными. Вследствие такого огромного натяжения типичная энергия колеблющейся петли в теории струн становится чрезвычайно большой. Чтобы понять это, вспомним, что чем больше натяжение струны, тем труднее заставить ее колебаться. Например, заставить колебаться струну скрипки гораздо легче, чем струну рояля. Поэтому две струны, колеблющиеся совершенно одинаковым образом, но натянутые по-разному, будут иметь различную энергию. Струна с большим натяжением будет иметь большую энергию, чем струна с низким натяжением, поскольку для того, чтобы привести ее в движение, потребуется большее количество энергии. В то время как струны рояля закреплены, что гарантирует постоянство их длины, для фундаментальных струн подобного закрепления, ограничивающего их размер, нет. Вместо этого чудовищное натяжение струн заставляет петли, которые рассматриваются в теории струн, сжиматься до микроскопических размеров. Детальные расчеты показывают, что под действием планковского натяжения типичная струна сжимается до планковской длины, т.е. до 10-33. Разрешение конфликта между гравитацией и квантовой механикой Конфликт между общей теорией относительности и квантовой механикой возникает благодаря свойствам структуры пространства, проявляющимся в субпланковском масштабе расстояний. Если элементарные компоненты Вселенной непригодны для исследований на субпланковских масштабах расстояний, это значит, что ни они, ни какие-либо объекты, состоящие из таких компонентов, не могут испытывать влияния этих кажущихся гибельных квантовых флуктуаций на малых масштабах. Это похоже на то, что произойдет, если мы проведем рукой по полированной гранитной поверхности – хотя на микроскопическом уровне гранит является дискретным, зернистым и неровным, наши пальцы не смогут обнаружить эти микроскопические неровности, и поверхность покажется нам абсолютно гладкой. Подобно этому, поскольку струна имеет конечные пространственные размеры, существует нижний предел ее разрешающей способности. Струна не способна обнаружить изменения на субпланковском масштабе расстояний. Подобно нашим пальцам на граните, струна смажет ультрамикроскопические флуктуации гравитационного поля. Теория струн ликвидирует фатальные бесконечности, возникающие при попытке построить квантовую теорию гравитации на основе точечных частиц. Во Вселенной, управляемой законами теории струн, уже не является истинной обычная точка зрения, согласно которой мы можем без ограничения делить объекты на все более и более мелкие части. Предел существует, он вступает в игру, когда мы сталкиваемся с разрушительной квантовой пеной, показанной на рис. 5.1. Следовательно, в определенном смысле можно утверждать, что бурные квантовые флуктуации на субпланковских расстояниях не существуют, поскольку предполагается, что струны являются наиболее фундаментальным объектом мироздания и имеют слишком большой размер, чтобы на них оказывали влияние флуктуации структуры пространства, происходящие на субпланковских расстояниях. Вывод, который можно из этого сделать, состоит в том, что предполагаемые флуктуации структуры пространства в масштабе субпланковских расстояний связаны исключительно с формулировкой общей теории относительности и квантовой механики в рамках модели, основанной на точечных частицах. Это означает, что центральное противоречие современной теоретической физики в определенном смысле является проблемой, которую породили мы сами. Поскольку мы ранее предположили, что все частицы вещества и все частицы, передающие взаимодействие, должны быть точечными объектами, практически не имеющими пространственной протяженности, мы были обязаны рассматривать свойства Вселенной на протяженно малых масштабах. И на самых малых расстояниях мы столкнулись с проблемой, выглядящей неразрешимой. Теория струн утверждает, что мы столкнулись с этой проблемой только потому, что существует предел тому, насколько глубоко можно исследовать Вселенную, - предел, определяющий, до какого уровня наше обычное понятие расстояния может применяться к ультрамикроскопической структуре мироздания. Несовместимости общей теории относительности и квантовой механики, проявляющейся только в масштабе субпланковских расстояний, можно избежать во Вселенной, где есть нижний предел для расстояний, которые доступны для исследований или которые существуют в обычном смысле этого слова. Такова Вселенная, описываемая теорий струн: в ней законы макромира и микромира могут быть без ущерба объединены, после того, как мы покончили с воображаемой катастрофой, возникающей на ультрамикроскопических расстояниях. К оглавлению >> 1. Предыстория и Основная идея >> 2. Теория относительности >> 3. Квантовая механика >> 4. Теория струн как разрешение конфликта >> 5. Свернутые измерения >> 6. Космология >> 7. Перспективы >>
|